Laboratory experiments on the tripolar vortex in a rotating fluid

Abstract
Within the framework of the study of coherent vortex structures as emerging in rotating, quasi-two-dimensional flows, the tripolar vortex is a relatively novel feature. It consists of a symmetric, linear arrangement of three patches of distributed vorticity of alternate signs, and the axis of this configuration rotates about the centre of the core vortex. This paper describes an experimental study of the formation of a tripole from an unstable axisymmetric vortex in a solidly rotating, homogeneous fluid. The flow is visualized by addition of dye, and is measured by streak photography of tracer particles. After digitization, the spatial distributions of the vorticity ω and the stream function ψ are calculated numerically, and 'scatter plots’ of ω versus ψ are presented for the various stages in the tripole formation process. Owing to viscous effects (spin-down by the bottom Ekman layer and lateral entrainment of ambient fluid) the tripole shows an exponential decay, both in its rotation speed and its internal, relative flow. The comparison of the observed flow characteristics with a simple point-vortex model shows reasonable quantitative agreement.