Abstract
We present experimental evidence for the synchronization of two semiconductor lasers exhibiting chaotic emission on subnanosecond time scales. The transmitter system consists of a semiconductor laser with weak to moderate coherent optical feedback and therefore exhibits chaotic oscillations. The receiver system is realized by a solitary semiconductor laser in which a fraction of the transmitter signal is coherently injected. We find that for a considerably large parameter range, synchronized receiver output can be achieved. We discuss the physical mechanism and demonstrate that the receiver acts as a chaos pass filter, which reproduces the chaotic fluctuations of the transmitter laser, but suppresses additionally encoded signals. Signal extraction at frequencies of up to 1 GHz has been achieved. Thus we provide a simple and robust optical chaos synchronization system that is promising for the realization of communication by sending signals with chaotic carriers.