Parallel velocity and temperature of argon ions in an expanding, helicon source driven plasma

Abstract
The parallel ion flow in a high-density helicon source plasma expanding into a region of weaker magnetic field is measured as a function of neutral pressure, magnetic field strength, rf power and rf driving frequency. The dependence of the parallel ion flow and parallel ion temperature, measured by laser induced fluorescence, on the plasma density, electron temperature and floating potential, measured with an rf-compensated Langmuir probe, is also examined. At the end of the helicon plasma source, the ion velocity space distribution changes from a single subsonically drifting Maxwellian population to a supersonic ion beam (≈15 eV) plus a cold, subsonically drifting background ion population. At 38 cm into the expansion region beyond the end of the plasma source, the supersonic ion beam is not observed.