Abstract
A quantum-mechanical variational technique is applied to an Einstein model of a solid, and the heats of sublimation and equations of state of solid Ne, A, Kr, and Xe are calculated at 0°K. Mie-Lennard-Jones 6-12 potentials appropriate to the gas-phase data are used throughout, and the importance of quantum-mechanical effects is discussed; in general, good agreement with experiment is obtained. From the theoretical zero-point energies equivalent Debye temperatures, θ, are calculated, and from the dependence of these θ on volume, Grüneisen constants are computed in good agreement with experiment. Theoretical compressibility curves (at 0°K) are presented, and compared with the available experimental data; in the case of Ne, the only substance for which high-pressure data are available, the agreement is rather good up to 20 k atmos.

This publication has 16 references indexed in Scilit: