Photocrosslinking of acrylated natural rubber

Abstract
Photocrosslinkable elastomers with pendent acrylate groups have been synthesized by ringopening reaction of epoxidized natural rubber with acrylic acid. The kinetics of the acrylation reaction has been studied by infrared spectroscopy and shown to obey a simple first‐order law. The acrylated natural rubber undergoes a fast crosslinking‐polymerization when it is exposed to UV radiation in the presence of an aryl ketone photoinitiator, with formation of a tridimensional polymer network within a few seconds. The cure kinetics has been studied in real time by monitoring the disappearance of the IR absorption of the grafted acrylate double bond. The rate of polymerization was found to increase linearly with the degree of acrylation of the rubber, reaching values up to 3 mol kg−1 s−1. The isoprene double bond, which is inactive in virgin natural rubber, also undergoes polymerization upon UV exposure when epoxy or acrylate groups are present. The UV‐cured polymer becomes totally insoluble in the organic solvents and exhibits remarkable mechanical properties, such as hardness, flexibility, and impact resistance. The gel fraction and the hardness were both shown to increase with the degree of acrylation and with the cure extent. © 1993 John Wiley & Sons, Inc.

This publication has 17 references indexed in Scilit: