Separable dual-space Gaussian pseudopotentials

Abstract
We present pseudopotential coefficients for the first two rows of the Periodic Table. The pseudopotential is of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set. At most, seven coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudopotential to a wave function can be done efficiently on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space, since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudopotentials by extensive atomic and molecular test calculations. © 1996 The American Physical Society.
All Related Versions