Rebinning-based algorithms for helical cone-beam CT

Abstract
Several image reconstruction algorithms based on rebinning have been proposed recently for helical cone-beam CT. These algorithms separate the 3D reconstruction into a set of independent 2D reconstructions for a set of surfaces: planar or non-planar surfaces are defined and then reconstructed using 2D filtered backprojection from a 2D fan-beam or parallel-beam set of data estimated from the cone-beam (CB) measurements. The first part of this paper presents a unified derivation of rebinning algorithms for planar and non-planar surfaces. An integral equation is derived for the surface allowing the best rebinning and an iterative algorithm converging to the solution of that equation is given. The second part presents an efficient method to correct the residual reconstruction artefacts observed with rebinning algorithms when the cone-angle is too large for the required accuracy. This correction algorithm involves a CB backprojection and the reconstruction time is slightly longer than for the zero-boundary (ZB) method.