Viral DNA Synthesis Defects in Assembly-Competent Rous Sarcoma Virus CA Mutants
- 1 January 2001
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 75 (1), 242-50
- https://doi.org/10.1128/jvi.75.1.242-250.2001
Abstract
The major structural protein of the retroviral core (CA) contains a conserved sequence motif shared with the CA-like proteins of distantly related transposable elements. The function of this major region of homology (MHR) has not been defined, in part due to the baffling array of phenotypes in mutants of several viruses and the yeast TY3. This report describes new mutations in the CA protein of Rous sarcoma virus (RSV) that were designed to test whether these different phenotypes might indicate distinct functional subdomains in the MHR. A comparison of 25 substitutions at 10 positions in the RSV conserved motif argues against this possibility. Most of the replacements destroyed virus infectivity, although either of two lethal phenotypes was obtained depending on the residue introduced. At most of the positions, one or more replacements (generally the more conservative substitutions) caused a severe replication defect without having any obvious effects on virus assembly, budding, Gag-Pol and genome incorporation, or protein processing. The mutant particles exhibited a defect in endogenous viral DNA synthesis and showed increased sensitivity of the core proteins to detergent, indicating that the mutations interfere with the formation and/or activity of the virion core. The distribution of these mutations across the MHR, with no evidence of clustering, suggests that the entire region is important for a critical postbudding function. In contrast, a second class of lethal substitutions (those that destroyed virus assembly and release) consists of alterations that are expected to cause severe effects on protein structure by disruption either of the hydrophobic core of the CA carboxyl-terminal domain or of the hydrogen bond network that stabilizes the domain. We suggest that this duality of phenotypes is consistent with a role for the MHR in the maturation process that links the two parts of the life cycle.Keywords
This publication has 97 references indexed in Scilit:
- Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retrovirusesJournal of Molecular Biology, 2000
- Solution Structure of the Capsid Protein from the Human T-cell Leukemia Virus Type-IJournal of Molecular Biology, 1999
- Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26Journal of Molecular Biology, 1999
- Positional cloning of the mouse retrovirus restriction gene FvlNature, 1996
- Structure of the Amino-Terminal Core Domain of the HIV-1 Capsid ProteinScience, 1996
- Dynamic Interactions of the Gag PolyproteinPublished by Springer Nature ,1996
- The Major Homology Region of the HIV-1 Gag Precursor Influences Membrane AffinityBiochemistry, 1996
- A nucleoprotein complex mediates the integration of retroviral DNA.Genes & Development, 1989
- Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quailCell, 1977
- Selective extraction of polyoma DNA from infected mouse cell culturesJournal of Molecular Biology, 1967