Inhibition of vascular smooth muscle cell migration by heparin‐like glycosaminoglycans

Abstract
Previous studies have suggested that heparin-like glycosaminoglycans may be endogenous inhibitors of smooth muscle proliferation in the vessel wall. The purpose of this study was to determine the effects of exogenous glycosaminoglycans on rat vascular (aortic) smooth muscle cell migration following wounding in vitro. Our data indicate that heparin and related molecules (iota carrageenan, dextran sulfate), but not other glycosaminoglycans (hyaluronate, chondroitin, and dermatan sulfates), inhibit smooth muscle cell motility in a cell-specific, dose-dependent, and reversible fashion. The effect of heparin was maximal (60% inhibition) at 10 μg/ml; a half-maximal effect was observed at 1 μg/ml; Heparin did not significantly affect the migration of bovine aortic endothelium or Swiss 3T3 cells. These observations support the concept that heparin-like glycosaminoglycans may be important regulators of vascular smooth muscle cell function.