Abstract
The patterns of chromosomal pairing and chiasma distribution were analyzed in male Sitka deer mice (Peromyscus sitkensis) polymorphic for terminally positioned pericentric inversions of chromosomes 6 and 7. Gand C-banding of somatic metaphases indicated that the inversions involved 30% and 40% of chromosomes 6 and 7, respectively. Analysis of silver-stained synaptonemal complexes in surface-spread zygotene and pachytene nuclei from heterozygous individuals revealed that inversion loops were not formed. The inverted segments proceeded directly to heterosynapsis without an intervening homosynaptic phase, and the heteromorphic bivalents remained straight-paired throughout pachynema. C-banded pachytene nuclei corroborated the occurrence of heterosynapsis, as the heteromorphic bivalents exhibited nonaligned centromeres. Analysis of diplonema and diakinesis indicated that crossing over had not occurred within the heterosynapsed inverted segments. The observation of chiasma suppression within the inversions indicates that pericentric inversion heterozygosity does not lead to the production of unbalanced gametes. Heterosynapsis of the inverted segments during zygonema and pachynema and the resulting chiasma suppression therefore represent a meiotic mechanism for the maintenance of pericentric inversion polymorphisms in this population of P. sitkensis.