Test of variational transition state theory with a large-curvature tunneling approximation against accurate quantal reaction probabilities and rate coefficients for three collinear reactions with large reaction-path curvature: Cl+HCl, Cl+DCl, and Cl+MuCl
- 15 May 1983
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 78 (10), 5981-5989
- https://doi.org/10.1063/1.444613
Abstract
The large-curvature ground-state model for the transmission coefficient of generalized transition state theory [presented in a previous paper by B. C. Garrett, D. G. Truhlar, A. F. Wagner, and T. H. Dunning, J. Chem. Phys. 78, 4400(1983)] is tested against accurate quantal calculations of the rate coefficients for collinear reactions with very large inertial effects, namely Cl+HCl→ClH+Cl, Cl+DCl→ClD+Cl, and Cl+MuCl→ClMu+Cl. The tests cover the temperature range 200–2400 K. The accurate rate calculations are based on reaction probabilities obtained by a new numerical method for solving Schrödinger’s equation in Delves’ coordinates. Improved canonical variational transition state theory predicts rate coefficients 5.0–18 times smaller than those predicted by conventional transition state theory for the H transfer; for the D transfer, the ratio is 2.0–3.4; and for Mu it is 22–2.8×107. The large-curvature model predicts transmission coefficients as large as 41, 8, and 206 for the H, D, and Mu-transfer cases at 200 K, decreasing to 1.2, 1.1, and 1.4 at 2400 K. Despite the large effect of variationally optimizing the transition state location and the large size of the tunneling effect and the wide variation of both effects with temperature, improved canonical variational transition state theory with large-curvature ground-state transmission coefficients (ICVT/LCG) is accurate within a factor of 1.7 over a temperature range of a factor of 8, 300–2400 K, for all three reactions. At 200 K, the ICVT/LCG model underestimates the rate coefficients, by factors of 2.3, 1.9, and 1.5 for H, D, and Mu, respectively.Keywords
This publication has 39 references indexed in Scilit:
- Hyperspherical description of collinear reactive scatteringJournal of Physics B: Atomic and Molecular Physics, 1982
- Incorporation of quantum effects in generalized-transition-state theoryThe Journal of Physical Chemistry, 1982
- Transition State TheoryAnnual Review of Physical Chemistry, 1981
- Variational transition state theory and vibrationally adiabatic transmission coefficients for kinetic isotope effects in the Cl–H–H reaction systemThe Journal of Chemical Physics, 1981
- Bimolecular Reactions of Vibrationally Excited MoleculesAnnual Review of Physical Chemistry, 1980
- Variational transition state theory. Primary kinetic isotope effects for atom transfer reactionsJournal of the American Chemical Society, 1980
- Reactive molecular collision calculationsComputer Physics Communications, 1979
- Vibrational nonadiabaticity and tunneling effects in transition state theoryThe Journal of Physical Chemistry, 1979
- Accuracy of tunneling corrections to transition state theory for thermal rate constants of atom transfer reactionsThe Journal of Physical Chemistry, 1979
- Collinear hydrogen atom transfer probabilities, O+HBr→OH+BrThe Journal of Chemical Physics, 1973