Full-Length Single-Walled Carbon Nanotubes Decorated with Streptavidin-Conjugated Quantum Dots as Multivalent Intracellular Fluorescent Nanoprobes

Abstract
We report the formation of a supramolecular luminescent nanoassembly composed of individual or small ropes of full-length, single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots. The supramolecular luminescent nanoassembly was stably dispersed under physiological conditions and was readily visible by both optical and confocal fluorescent microscopies. Jurkat T leukemia cells were able to internalize the nanoassembly by multivalent CD3 receptor-mediated endocytosis (adsorption by cell). Once internalized by cells, the nanoassembly was found to be transported to lysosomes. These properties should make this supramolecular luminescent nanoassembly an excellent building block for the construction of intracellular polyvalent nanoprobes, mimicking natural viral delivery entities with enhanced loading capacity compared to small molecules.
Keywords