A high-quality genome sequence of alkaligrass provides insights into halophyte stress tolerance

Abstract
Alkaligrass (Puccinellia tenuiflora) is a monocotyledonous halophytic forage grass widely distributed in Northern China. It belongs to the Gramineae family and shares a close phylogenetic relationship with the cereal crops, wheat and barley. Here, we present a high-quality chromosome-level genome sequence of alkaligrass assembled from Illumina, PacBio and 10× Genomics reads combined with genome-wide chromosome conformation capture (Hi-C) data. The ∼1.50 Gb assembled alkaligrass genome encodes 38,387 protein-coding genes, and 54.9% of the assembly are transposable elements, with long terminal repeats being the most abundant. Comparative genomic analysis coupled with stress-treated transcriptome profiling uncovers a set of unique saline- and alkaline-responsive genes in alkaligrass. The high-quality genome assembly and the identified stress related genes in alkaligrass provide an important resource for evolutionary genomic studies in Gramineae and facilitate further understanding of molecular mechanisms underlying stress tolerance in monocotyledonous halophytes. The alkaligrass genome data is freely available at http://xhhuanglab.cn/data/alkaligrass.html.