External and internal factors regulating metabolic rates of an estuarine benthic community

Abstract
The structure and metabolism of a soft-sediment estuarine macrofaunal community were measured over an annual cycle at two depth-contours in mesohaline Chesapeake Bay. Additional data for plankton productivity and respiration, as well as seston and sediment organics are also summarized for these communities. Benthic community respiration ranged from 0.24–3.38 g O2 m-2 d-1, and significant differences were detected between the two depths. Similarly, macroinfaunal standing stocks reached 11.2 and 32.3 g (ash free) m-2 for 3 m and 6 m depth communities, respectively, and both exhibited mid-summer declines in abundance. Inferences drawn from these data facilitated a partitioning of benthic community respiration into macrofaunal and meiofaunal/microbial components with a residual term, much of which could be explained statistically by interactions between these two components. A multi-variate statistical model developed from these data matched benthic respiration measurements within 1–2 S.E. Mass-balances of organic carbon were estimated for water column and benthos at the two depthcontours for early and late summer, as well as for an entire, time-weighted year. These various analyses led to the tentative conclusions that this benthic community was regulated by such internal factors as macrofaunal/meiofaunal grazing and “microbial gardening”, and by external factors such as temperature and predation by nekton. However, it appears that the ultimate control for this community was the supply of energy from organic carbon.