Parity violation induced by weak neutral currents in atomic physics. part II

Abstract
The first part of this paper gives a detailed account of the evaluation of the electric dipole amplitude induced in alkali one-photon S-S transitions, by the parity violating electron-nucleus short range potential Vp.v. associated with the weak neutral currents. Two methods are presented : the first involves an explicit sum over the contributions of the P-states admixed with the S-states and incorporates the best information available on S-P electric dipole amplitudes. The second method, mathematically more elegant, avoids with the help of Green's function techniques any explicit sum over the P states, and, provided that some spin-orbit corrections are neglected, leads to a fairly simple formula involving Coulomb integrals tabulated in the literature and the interpolated quantum defects for S and P waves. The second part is devoted to a description of possible ways to detect parity violation induced in radiative S-S transitions, with a brief discussion of physical processes which could be a source of experimental difficulty. The last section of the paper deals with a theoretical analysis of the influence of a static electric field on the radiative S-S transitions. An evaluation of the induced electric dipole amplitude in the case of cesium indicates that it will compete with the magnetic dipole amplitude for electric fields larger than 10 V/cm. An interference effect between these two amplitudes gives rise to an electronic polarization in the final atomic state proportional to the vector product of the static electric field by the photon momentum which, in a typical case, could be as large as 64 %; the measurement of this interesting and rather peculiar effect will lead to a determination of the sign of the magnetic dipole amplitude. Moreover parity violation could manifest itself by a dependence of this electron polarization on the state of circular polarization of the incident photon