First isolation and further characterization of enteropathogenic Escherichia coli (EPEC) O157:H45 strains from cattle
Open Access
- 17 March 2004
- journal article
- Published by Springer Nature in BMC Microbiology
- Vol. 4 (1), 10
- https://doi.org/10.1186/1471-2180-4-10
Abstract
Enteropathogenic Escherichia coli (EPEC), mainly causing infantile diarrhoea, represents one of at least six different categories of diarrheagenic E. coli with corresponding distinct pathogenic schemes. The mechanism of EPEC pathogenesis is based on the ability to introduce the attaching-and-effacing (A/E) lesions and intimate adherence of bacteria to the intestinal epithelium. The role and the epidemiology of non-traditional enteropathogenic E. coli serogroup strains are not well established. E. coli O157:H45 EPEC strains, however, are described in association with enterocolitis and sporadic diarrhea in human. Moreover, a large outbreak associated with E. coli O157:H45 EPEC was reported in Japan in 1998. During a previous study on the prevalence of E. coli O157 in healthy cattle in Switzerland, E. coli O157:H45 strains originating from 6 fattening cattle and 5 cows were isolated. In this study, phenotypic and genotypic characteristics of these strains are described. Various virulence factors (stx, eae, ehxA, astA, EAF plasmid, bfp) of different categories of pathogenic E. coli were screened by different PCR systems. Moreover, the capability of the strains to adhere to cells was tested on tissue culture cells. All 11 sorbitol-positive E. coli O157:H45 strains tested negative for the Shiga toxin genes (stx), but were positive for eae and were therefore considered as EPEC. All strains harbored eae subtype alpha1. The gene encoding the heat-stable enterotoxin 1 (EAST1) was found in 10 of the 11 strains. None of the strains, however, carried ehx A genes. The capability of the strains to adhere to cells was shown by 10 strains harbouring bfp gene by localized adherence pattern on HEp-2 and Caco-2 cells. This study reports the first isolation of typical O157:H45 EPEC strains from cattle. Furthermore, our findings emphasize the fact that E. coli with the O157 antigen are not always STEC but may belong to other pathotypes. Cattle seem also to be a reservoir of O157:H45 EPEC strains, which are described in association with human diseases. Therefore, these strains appear to play a role as food borne pathogens and have to be considered and evaluated in view of food safety aspects.Keywords
This publication has 35 references indexed in Scilit:
- Fecal Shedding of Escherichia coli O157, Salmonella, and Campylobacter in Swiss Cattle at SlaughterJournal of Food Protection, 2004
- Serotypes, Virulence Genes, and Intimin Types ofShiga Toxin (Verotoxin)-Producing Escherichia coli Isolatesfrom Cattle in Spain and Identification of a New Intimin VariantGene( eae- ξ)Journal of Clinical Microbiology, 2004
- Description of a Novel Intimin Variant (Type ζ) in the Bovine O84:NM Verotoxin-Producing Escherichia coli Strain 537/89 and the Diagnostic Value of Intimin TypingExperimental Biology and Medicine, 2003
- Serotypes, Virulence Genes, and Intimin Types of Shiga Toxin (Verotoxin)-Producing Escherichia coli Isolates from Healthy Sheep in SpainJournal of Clinical Microbiology, 2003
- Genetic Diversity of Intimin Genes of Attaching and EffacingEscherichia coliStrainsJournal of Clinical Microbiology, 2002
- Typical and Atypical EnteropathogenicEscherichia coliEmerging Infectious Diseases, 2002
- Typing of Intimin Genes in Human and Animal Enterohemorrhagic and EnteropathogenicEscherichia coli: Characterization of a New Intimin VariantInfection and Immunity, 2000
- The type IV bundle‐forming pilus of enteropathogenic Escherichia coli undergoes dramatic alterations in structure associated with bacterial adherence, aggregation and dispersalMolecular Microbiology, 1999
- Strains of Escherichia coli O157:H8 from human diarrhoea belong to attaching and effacing class of E coli.Journal of Clinical Pathology, 1992
- Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cellsThe Pediatric Infectious Disease Journal, 1987