Effect of vitamin E on pentane exhaled by rats treated with methyl ethyl ketone peroxide

Abstract
One useful method to monitor in vivo lipid peroxidation is the measurement of volatile hydrocarbons, mainly pentane and ethane, that derive from unsaturated fatty acid hydroperoxides. Vitamin E, the biological antioxidant, inhibits lipid peroxidation and the production of pentane and ethane. The rates of pentane production by male Sprague-Dawley rats fed a diet that contained 10% vitamin E-stripped corn oil and 0, 1, 3, 5 or 10 IU dl-α-tocopherol acetate/kg were monitored over a 12-wk period. During the eleventh and twelfth weeks, the rats were injected intraperitoneally with 3.3 and 13 mg of methyl ethyl ketone peroxide (MEKP)/kg body wt, respectively. Pentane production was then measured at intervals over a 50-min period, and the total amount of pentane produced over this time interval was estimated. An asymptotic function was found to describe the relationship between exhaled pentane and the low levels of dietary vitamin E that were fed to the rats. As measured by pentane production, rats had a higher minimal vitamin E requirement after they were treated with the potent peroxidation initiator MEKP than they did prior to treatment. The level of pentane exhaled by rats injected with 13 mg MEKP/kg body wt was significantly correlated with kidney and spleen tocopherol levels.