Abstract
Beta-Lactamases, enzymes that catalyse the hydrolysis of the beta-lactam ring in beta-lactam antibiotics, are divided into three classes, A, B and C, on the basis of the structures so far determined. There are relatively few effective inhibitors of class C beta-lactamases. A beta-lactam sulphone with a hydroxybenzyl side chain, namely (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide (I), has now been studied. The sulphone is a good mechanism-based inhibitor of class C beta-lactamases. At pH8, the inhibition of a Pseudomonas beta-lactamase is irreversible, and proceeds at a rate that is about one-tenth the rate of concurrent hydrolysis. The labelled enzyme has enhanced u.v. absorption and is probably an enamine. At a lower pH, however, inhibition is transitory.