Abstract
A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of /sup 14/C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO/sub 2/ partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO/sub 2/ fertilization and impose a constraint on the ultimate total carbon mass in the biosphere.