Genes and their organization in the replication origin region of the bacterial chromosome

Abstract
Genes and their organization are conserved in the replication origin region of the bacterial chromosome. To determine the extent of the conserved region in Gram-positive and Gram-negative bacteria, which diverged 1.2 billion years ago, we have further sequenced the region upstream from the dnaA genes in Bacillus subtilis and Pseudomonas putida. Fifteen open reading frames (ORFs) and 11 ORFs were identified in the 13.6 kb and the 9.8 kb fragments in B. subtilis and P. putida, respectively. Eight consecutive P. putida genes, except for one small ORF (homologous to gene 9K of Escherichia coli) in between, are homologous in sequence and relative locations to genes in B. subtilis. Altogether, 12 genes and their organization are conserved in B. subtilis and P. putida in the origin region. We found that the conserved region terminated on one side after the orf290 in P. putida (orf282 in B. subtilis). In the B. subtilis chromosome, five additional ORFs were found in between the conserved genes, suggesting that they are added after Gram-positive bacteria were diverged from the Gram-negative bacteria. One of the ORFs is a duplicate of the conserved gene. The third non-translatable region containing multiple repeats of DnaA-box (second in the case of P. putida) was found flanking gidA in both organisms. This result shows clearly that E. coli oriC and flanking genes gidA and gidB have been translocated by the inversion of some 40 kb fragment.