Balance between Acetylation and Methylation of Histone H3 Lysine 9 on the E2F-Responsive Dihydrofolate Reductase Promoter

Abstract
Epigenetic marks that specify silent heterochromatic domains in eucaryotic genomes include methylation of histone H3 lysine 9. Strikingly, active loci in the vicinity of silent domains are sometimes characterized by acetylation of histone H3 lysine 9, suggesting that the balance between these two competitive modifications is important for the establishment of specific chromatin structures. Some euchromatic genes, targeted by the retinoblastoma protein Rb, are also believed to be regulated by histone H3 lysine 9 methylation. Here, we study the dihydrofolate reductase promoter, which is repressed in G0 and at the beginning of G1 by p107 or p130, two Rb-related proteins. We found that these two pocket proteins share with Rb the ability to associate with the histone methyl transferase SUV39H1. SUV39H1 can be recruited to the E2F transcription factor and functions as a transcriptional corepressor. With ChIP assays followed by real-time PCR, we showed that K9 of histone H3 evolves from a hypermethylated state in G0 to a hyperacetylated state at the G1/S transition. Taken together, these results indicate that the temporal regulation of euchromatic promoters may involve controlling the balance between methylation and acetylation of histone H3 lysine 9, a feature previously described for the spatial regulation of chromatin function.