Cloning and characterization of PSF, a novel pre-mRNA splicing factor.

Abstract
Previously, we characterized cDNAs encoding polypyrimidine tract-binding protein (PTB) and showed that a complex between PTB and a 100-kD protein was necessary for pre-mRNA splicing. In this paper we have used two different in vitro-binding assays to confirm and extend the interaction between these two proteins. Peptide sequence information was used to clone and sequence cDNAs encoding alternatively spliced forms of the 100-kD protein. It contains two consensus RNA-binding domains and an unusual amino terminus rich in proline and glutamine residues. The protein is highly basic and migrates anomalously on SDS gels. Owing to its interaction with PTB and its role in pre-mRNA splicing, we have termed the 100-kD protein PTB-associated splicing factor (PSF). The RNA-binding properties of PSF are apparently identical to those of PTB. Both proteins, together and independently, bind the polypyrimidine tract of mammalian introns. Biochemical complementation, antibody inhibition, and immunodepletion experiments demonstrate that PSF is an essential pre-mRNA splicing factor required early in spliceosome formation. Bacterially synthesized PSF is able to complement immunodepleted extracts and restore splicing activity. Despite association with PSF, complementary experiments with antibodies against PTB do not suggest an essential role for PTB in pre-mRNA splicing.