Volume rendering on the MasPar MP-1

Abstract
This work presents the implementation of data-parallel perspective volume rendering on a massively parallel SIMD computer, the MasPar MP-1, and shows the benefits of e$icient indirect addressing (an MP-1 feature) which allows individual processing elements to address their local memory independently. Emphasis is put on the geometric transformations required for volume rendering algorithms. TJte data-parallel algorithm separates multi-dimensional spatial transformations into a series of one-dimensional operations that can be performed in parallel on regular data domains, providing performance linear with data size. The rotation andperspective transformation is reduced to four shearlscale passes. The separable approach allows for predictable and regular data handling, independent of data values, allowing optimization of communication between processing elements. The communications required are data axis transpositions, wJtich can be peflormed using the MP-1 ‘s global router, which delivers scalable peflormance. Wrtualization allows graceful scaling in both problem size and architecture size, and a hierarchical design provides a flexible and portable fiamework suitable for different data-parallel SIMD architectures.