Protein-heme interaction in hemoglobin: evidence from Raman difference spectroscopy.

Abstract
Raman difference spectroscopy measurements on native and chemically modified human deoxyhemoglobins stabilized in either the R or the T quaternary structure revealed frequency differences in the oxidation state marker lines. The differences indicate that the R structure has an effective increase in the electron density of the antibonding pi* orbitals of the porphyrin rings. This increase is explained by a charge transfer interaction between donor orbitals and the pi* orbitals of the porphyrins. The relative amount of charge transferred, which is inferred from the Raman difference measurements, correlates with some but not all factors that influence the energetics of the quaternary structure equilibrium. In addition, the free energy of cooperativity for a variety of ligated proteins follows the same order as that of the degree of charge depletion of the pi* orbitals upon ligation as determined from the frequency of a Raman mode. The proposed electronic interaction between the protein and heme could result in energies large enough to provide a significant contribution to the energetics of hemoglobin cooperativity.