Stem cell studies of human malignant brain tumors

Abstract
A stem cell assay for human malignant gliomas has been developed. Cells obtained from tumor biopsies grew into colonies composed of malignant glial cells, as documented by histochemical, immunohistochemical, and immunobiological techniques. Studies suggest that the disaggregated cells are representative of the cells within the solid tumor. Clonogenic cells were obtained from 48 tumors and analyzed for their in vitro sensitivity to graded doses of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). The in vitro anti-tumor activity of BCNU at clinically achievable doses was compared to clinical response to the agent based on changes in computerized tomographic scan, radionuclide brain scan, and neurological examinations. Twenty-two patients received nitrosoureas before or after tumor specimen analysis, and were eligible for in vitro-in situ correlations. Clinical tumor sensitivity to nitrosoureas was predicted by culture results in 42% of all evaluable patients, and clinical resistance was predicted in 100%. The capability of the assay can be appreciated best for the 13 patients not treated with BCNU prior to culture; the in vitro prediction of clinical sensitivity and resistance was 71% and 100%, respectively. Preliminary findings show that clinical tumor resistance to BCNU may result from "intrinsic" cell resistance in some patients and from inadequate delivery of drug to tumor cells in other cases. The potential utility of this method to study the reason(s) for tumor cell resistance to drugs, to screen new chemotherapeutic agents, to individualize patient treatment, and to investigate tumor biology is discussed.