Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
Top Cited Papers
- 5 June 2013
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 498 (7452), 82-86
- https://doi.org/10.1038/nature12151
Abstract
Visualizing individual molecules with chemical recognition is a longstanding target in catalysis, molecular nanotechnology and biotechnology. Molecular vibrations provide a valuable ‘fingerprint’ for such identification. Vibrational spectroscopy based on tip-enhanced Raman scattering allows us to access the spectral signals of molecular species very efficiently via the strong localized plasmonic fields produced at the tip apex1,2,3,4,5,6,7,8,9,10,11. However, the best spatial resolution of the tip-enhanced Raman scattering imaging is still limited to 3−15 nanometres5,12,13,14,15,16, which is not adequate for resolving a single molecule chemically. Here we demonstrate Raman spectral imaging with spatial resolution below one nanometre, resolving the inner structure and surface configuration of a single molecule. This is achieved by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons. This matching is made possible by the extremely precise tuning capability provided by scanning tunnelling microscopy. Experimental evidence suggests that the highly confined and broadband nature of the nanocavity plasmon field in the tunnelling gap is essential for ultrahigh-resolution imaging through the generation of an efficient double-resonance enhancement for both Raman excitation and Raman emission. Our technique not only allows for chemical imaging at the single-molecule level, but also offers a new way to study the optical processes and photochemistry of a single molecule.Keywords
This publication has 30 references indexed in Scilit:
- Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopyNature Nanotechnology, 2012
- Single-Molecule Tip-Enhanced Raman SpectroscopyThe Journal of Physical Chemistry C, 2011
- Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopyNature Communications, 2011
- Optical nanocrystallography with tip-enhanced phonon Raman spectroscopyNature Nanotechnology, 2009
- Scanning-probe Raman spectroscopy with single-molecule sensitivityPhysical Review B, 2006
- Nanoscale Vibrational Analysis of Single-Walled Carbon NanotubesJournal of the American Chemical Society, 2005
- Surface Enhanced Raman Spectroscopy: Towards Single Molecule SpectroscopyElectrochemistry, 2000
- Metallized tip amplification of near-field Raman scatteringOptics Communications, 2000
- Locally enhanced Raman spectroscopy with an atomic force microscopeApplied Physics Letters, 2000
- Nanoscale chemical analysis by tip-enhanced Raman spectroscopyChemical Physics Letters, 2000