From Molecular Diversity to Catalysis: Lessons from the Immune System

Abstract
By combining the enormous molecular diversity of the immune system with basic mechanistic principles of chemistry, one can produce catalytic antibodies that allow control of reactions in ways heretofore not possible. Mechanistic and structural studies of these antibodies are also providing insights into important aspects of enzymatic catalysis and the evolution of catalytic function. Moreover, the ability to rationally direct the immune response to generate selective catalysts for reactions ranging from pericyclic and redox reactions to cationic rearrangement reactions underscores the chemical potential of this and other large combinatorial libraries.