Cellular defenses against Toxoplasma gondii in newborns.

Abstract
Mononuclear phagocytes, particularly macrophages (M phi) that have been activated by lymphokines, are the principal defense against intracellular pathogens such as Toxoplasma gondii. To determine reasons for the newborns' susceptibility to Toxoplasma infection, we compared: the interaction of Toxoplasma with newborns' mononuclear phagocytes (blood monocytes and two types of newborn M phi, those derived from blood monocytes or from placental tissue) with adults' blood monocytes and monocyte-derived M phi and the production of M phi-activating lymphokines (MAF) by Concanavalin A (ConA)-stimulated newborn and adult blood mononuclear cells (MC). Newborn and adult monocytes killed Toxoplasma with equal efficiency. Similarly, survival and replication of Toxoplasma were comparable in control newborn and adult M phi. Exposure to adult ConA supernatants significantly decreased the survival and replication of Toxoplasma both in adult and newborn M phi. In contrast, exposure to cord blood ConA supernatants failed to affect the survival or the replication of Toxoplasma in newborn M phi and decreased the replication but not the survival of Toxoplasma in adult M phi. Exposure to ConA supernatants of peripheral blood MC from 2-5-d old newborns failed to affect survival or replication of Toxoplasma in newborn or adult M phi. Thus, both generation of MAF by newborn blood MC and response to newborn MAF by newborn M phi were impaired. Generation of MAF by adult blood mononuclear cells was not inhibited by cord blood MC nor was generation of MAF by cord blood MC increased by depletion of OKT8 antibody-binding cells, by depletion of adherent cells with or without addition of adult adherent cells, or by addition of indomethacin. Depletion of OKT4 antibody-binding cells abrogated the generation of MAF both by adult and cord blood MC. The activity of adult ConA supernatants was abrogated by dialysis at pH 2 or by addition of anti-gamma-interferon but not anti-alpha-interferon antibody. However, the correlation between antiviral interferon activity and anti-Toxoplasma activity was weak (r = 0.40). Enhanced M phi anti-Toxoplasma activity was not associated with detectably enhanced superoxide anion generation, nitroblue tetrazolium reduction, or phagolysosome fusion, and was not inhibited by catalase, superoxide dismutase, or mannitol. These results indicate that generation of and response to MAF is decreased in cells from human newborns and that gamma-interferon may be the major MAF under these conditions.