Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids

Abstract
The 1250 A diameter herpes simplex virus-1 (HSV-1) capsid shell consists of four major structural proteins, of which VP26 (approximately 12,000 M(r)) is the smallest. Using 400 kV electron cryomicroscopy and computer reconstruction, we have determined the three-dimensional structures of the wild-type capsid and a recombinant baculovirus-generated HSV-1 capsid which lacks VP26. Their difference map demonstrates the presence of VP26 hexamers attached to all the hexons in the wild-type capsid, and reveals that the VP26 molecule consists of a large and a small domain. Although both hexons and pentons are predominantly composed of VP5, VP26 is not present on the penton. Based on the interactions involving VP26 and the hexon subunits, we propose a mechanism for VP26 assembly which would account for its distribution. Possible roles of VP26 in capsid stability and DNA packaging are discussed.