Ethanol Oxidation and Toxicity: Role of Alcohol P‐450 Oxygenase
- 1 December 1986
- journal article
- review article
- Published by Wiley in Alcohol, Clinical and Experimental Research
- Vol. 10 (s1), 44S-49S
- https://doi.org/10.1111/j.1530-0277.1986.tb05179.x
Abstract
The isolation and characterization of ethanol-inducible rabbit liver microsomal cytochrome P-450, termed P-450 3a or P-450ALC, has provided definitive evidence for the role of this enzyme in alcohol oxidation. From findings on the distribution, substrate specificity, and mechanism of action of P-450ALC we have suggested "alcohol P-450 oxygenase" as a more biochemically accurate name than "microsomal ethanol-oxidizing system." The present review is concerned with studies in this and other laboratories on activities and inducers associated with this versatile enzyme. Numerous xenobiotics, including alcohols and ketones, nitrosamines, aromatic compounds, and halogenated alkanes, alkenes, and ethers, are known to undergo increased microsomal metabolism after chronic exposure of various species to ethanol. Diverse compounds and treatments may induce P-450ALC, including the administration of ten or more chemically different compounds, fasting, or the diabetic state. Whether a common mechanism of induction is involved is unknown at this time. As direct evidence that P-450ALC catalyzes numerous metabolic reactions, the purified rabbit enzyme has been used in a reconstituted system to demonstrate various metabolic transformations, including the oxidation of various alcohols, acetone, acetol, p-nitrophenol, and aniline, the dealkylation of substituted nitrosamines, the reductive dechlorination of carbon tetrachloride, carbon tetrachloride-induced lipid peroxidation, and acetaminophen activation to form the glutathione conjugate.Keywords
This publication has 86 references indexed in Scilit:
- The production of 1,2-propanediol in ethanol treated ratsBiochemical and Biophysical Research Communications, 1985
- Stereochemical studies on the cytochrome P-450 and hydroxyl radical dependent pathways of 2-butanol oxidation by microsomes from chow-fed, phenobarbital-treated, and ethanol-treated ratsBiochemistry, 1984
- Induction of the ethanol-inducible form of rabbit liver microsomal cytochrome P-450 by inhibitors of alcohol dehydrogenaseBiochemical and Biophysical Research Communications, 1984
- Potentiation of dimethylnitrosamine genotoxicity in rat hepatocytes isolated following ethanol treatment in vivoChemico-Biological Interactions, 1984
- Induction of a high affinity nitrosamine demethylase in rat liver microsomes by acetone and isopropanolChemico-Biological Interactions, 1983
- Pyrazole-induced cytochrome P-450 in rat liver microsomes: An isozyme with high affinity for dimethylnitrosamineBiochemical and Biophysical Research Communications, 1981
- Ethanol induction of acetaminophen toxicity and metabolismLife Sciences, 1980
- Effect of chronic ethanol ingestion on intestinal metabolism and mutagenicity of benzo(α)pyreneBiochemical and Biophysical Research Communications, 1978
- Microsomal ethanol-oxidizing system (MEOS): Purification and properties of a rat liver system free of catalase and alcohol dehydrogenaseBiochemical and Biophysical Research Communications, 1972
- Drug metabolism in ethanol induced fatty liverLife Sciences, 1970