Abstract
We examined the relationship between the biological protective mechanisms of scavengers and free radicals that are elicited by subarachnoid hemorrhage (SAH) in the pathogenesis of prolonged vasospasm following ruptured intracranial aneurysm. The study included 25 patients treated by early surgery (within 72 hours after SAH). Lipid peroxides concentrations and the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-px) in the cerebrospinal fluid (CSF) were measured. The concentration of lipid peroxides increased significantly more (p less than 0.05) during the first 4 days after SAH in patients with symptomatic vasospasm than in those without. Patients with symptomatic vasospasm had a marked decrease in SOD activity on Days 3 and 4 followed by a gradual decrease, whereas the patients without spasm showed little change (difference between the groups, p less than 0.05). There was a significant difference in catalase activity reversal to SOD activity, but no difference in GSH-px activity. Thus, correlation was close between the increased lipid peroxides concentration and the decrease in SOD activity in CSF (p less than 0.05), suggesting an important mechanism in the pathogenesis of vasospasm.