Frontal Callosal Fiber Integrity Selectively Predicts Coordinated Psychomotor Performance in Chronic Alcoholism

Abstract
Introduction Quantitative fiber tracking with diffusion tensor imaging (DTI) provides a new approach for assessing deficits in the microstructural integrity of white matter circuits that may underlie cognitive deficits associated with conditions affecting white matter, including chronic alcoholism. Methods Alcoholic men and women (n = 87) and healthy controls (n = 88) performed the Digit Symbol (DS) test and underwent structural and diffusion tensor imaging. Measures of fractional anisotropy (FA) of fibers passing through genu and splenium were computed, as were size of genu and splenium fiber target regions of interest (ROI). Results Alcoholics scored lower than controls on the DS and had even greater deficits in genu than splenium fiber FA. In alcoholics, fiber FA of the genu selectively predicted DS scores after accounting for splenium FA. Neither fiber FA measure predicted incidental recall of the symbols used in the task. Size of genu and splenium ROI, although reduced in alcoholics, did not predict DS score or incidental recall. Conclusions Quantitative tractography of frontal fibers connecting left and right hemispheres selectively predicted performance by alcoholics on a coordinated psychomotor task and provide support for frontally based systems in Digit Symbol performance, both of which are compromised in recovering alcoholics.