FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: Neuroimmunophilin ligand‐mediated neuroprotection in a model of multiple sclerosis

Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) in which demyelination and axonal loss result in permanent neurologic disability. We examined the neuroprotective property of the immunosuppressant FK506 (tacrolimus), FK1706 (a nonimmunosuppressant FK506 derivative) and cyclosporin A (CsA) in a chronic relapsing experimental autoimmune encephalomyelitis (EAE) model of MS. Female SJL/J mice were immunized by subcutaneous (s.c.) injection with proteolipid protein 139–151 peptide in complete Freund's adjuvant. At the onset of paralysis, 12–14 days after immunization, mice received daily s.c. injections of FK506 (0.2, 1, and 5 mg/kg), FK1706 (5 mg/kg), CsA (2, 10, and 50 mg/kg), saline or vehicle (30% dimethylsulfoxide) for 30 days. FK506 (at a dose of 5 mg/kg) reduced the severity of the initial disease and suppressed relapses. FK1706 did not significantly alter the clinical course and CsA (at a dose of 50 mg/kg) lessened the severity of the initial episode of EAE but did not alter relapses. In the thoracic spinal cord, FK506 (5 mg/kg), FK1706 (5 mg/kg), and CsA (50 mg/kg) significantly (P < 0.001) reduced the extent of damage in the dorsal, lateral, and ventral white matter by a mean of up to 95, 68, and 30%, respectively. A nonimmunosuppressant dose of FK506 (0.2 mg/kg) also significantly (P < 0.001) reduced the extent of damage in the spinal cord by a mean of up to 45%. Other dosages of these compounds were ineffective. FK506 markedly protects against demyelination and axonal loss in this MS model through immunosuppression and neuroprotection.