Abstract
Matrix inversion is very inefficient for computing direct solutions of the large sparse systems of linear equations that arise in many network problems. Optimally ordered triangular factorization of sparse matrices is more efficient and offers other important computational advantages in some applications. With this method, direct solutions are computed from sparse matrix factors instead of from a full inverse matrix, thereby gaining a significant advantage in speed, computer memory requirements, and reduced round-off error. Improvements of tea to one or more in speed and problem size over present applications of the inverse can be achieved in many cases. Details of the method, numerical examples, and the results of a large problem are given.

This publication has 4 references indexed in Scilit: