Enzymatic route to preparative-scale synthesis of UDP–GlcNAc/GalNAc, their analogues and GDP–fucose

Abstract
Enzymatic synthesis using glycosyltransferases is a powerful approach to building polysaccharides with high efficiency and selectivity. Sugar nucleotides are fundamental donor molecules in enzymatic glycosylation reactions by Leloir-type glycosyltransferases. The applications of these donors are restricted by their limited availability. In this protocol, N-acetylglucosamine (GlcNAc)/N-acetylgalactosamine (GalNAc) are phosphorylated by N-acetylhexosamine 1-kinase (NahK) and subsequently pyrophosphorylated by N-acetylglucosamine uridyltransferase (GlmU) to give UDP–GlcNAc/GalNAc. Other UDP–GlcNAc/GalNAc analogues can also be prepared depending on the tolerance of these enzymes to the modified sugar substrates. Starting from l-fucose, GDP–fucose is constructed by one bifunctional enzyme l-fucose pyrophosphorylase (FKP) via two reactions.

This publication has 25 references indexed in Scilit: