A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair
- 26 May 2009
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 106 (21), 8495-8500
- https://doi.org/10.1073/pnas.0903654106
Abstract
Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells.Keywords
This publication has 20 references indexed in Scilit:
- Flexibility of Eukaryotic Okazaki Fragment Maturation through Regulated Strand Displacement SynthesisJournal of Biological Chemistry, 2008
- Mechanisms and functions of DNA mismatch repairCell Research, 2007
- Saccharomyces cerevisiae MutLα Is a Mismatch Repair EndonucleaseJournal of Biological Chemistry, 2007
- Mechanisms in Eukaryotic Mismatch RepairJournal of Biological Chemistry, 2006
- The multifaceted mismatch-repair systemNature Reviews Molecular Cell Biology, 2006
- Human Mismatch RepairJournal of Biological Chemistry, 2005
- Mismatch Repair in Human Nuclear ExtractsJournal of Biological Chemistry, 2002
- Contribution of Human Mlh1 and Pms2 ATPase Activities to DNA Mismatch RepairPublished by Elsevier ,2002
- Human Exonuclease I Is Required for 5′ and 3′ Mismatch RepairJournal of Biological Chemistry, 2002
- exo1-Dependent Mutator Mutations: Model System for Studying Functional Interactions in Mismatch RepairMolecular and Cellular Biology, 2001