Abstract
The effect of various anesthetics on the functional-metabolic coupling of cerebral cortex was studied in rats submitted to unilateral somatosensory stimulation. The regional cerebral metabolic rate of glucose (CMRglc) was measured autoradiographically using the 2-deoxyglucose method, and somatosensory activation was carried out by electrical stimulation of the left forepaw. In animals treated with 70% nitrous oxide, 0.5% halothane/70% nitrous oxide or 40 mg/kg pentobarbital, CMRglc of somatosensory cortex did not change despite generation of primary evoked cortical potentials. Anesthesia with 80 mg/kg alpha-chloralose, in contrast, led to a focal increase of CMRglc in the primary somatosensory cortex from 52.1 ± 18.3 to 73.1 ± 18.9 μmol/100 g/min (means ± s.d.). Metabolic activation was strictly confined to the forelimb (FL) area of somatosensory cortex, and it exhibited a laminar pattern with maximal activation in layers I, II and IV. The preservation of functional-metabolic coupling under a surgical dose of chloralose renders this anesthetic particularly suited for the investigation of coupling processes under conditions where the experimental requirements preclude the use of unanaesthetized animals.