Turnover of Functional Basic Fibroblast Growth Factor Receptors on the Surface of BHK and NIH 3T3 Cells

Abstract
The recovery of functional cell-surface bFGF receptors after trypsin treatment was studied in BHK cells and NIH 3T3 cells. Restoration of functional bFGF receptors occurred at an approximately linear rate with 50% of the high-affinity binding capacity restored after 4 hr. Restoration of functional receptors required protein synthesis but not RNA synthesis. Upon exposure of BHK cells to bFGF, cell-surface receptors were rapidly lost, with only 25% remaining after 1 hr. When the bFGF was removed, down-regulated BHK and NIH 3T3 cells recovered cell-surface receptors at about the same rate observed in trypsin-treated cells. The recovery of receptors after down-regulation was inhibited by protein synthesis inhibitors. Addition of the protein synthesis inhibitor cycloheximide to unperturbed cultures of BHK or NIH 3T3 cells resulted in a time-dependent loss of cell-surface bFGF receptors, demonstrating that the receptors turn over constantly in the absence of ligand. These results suggest that bFGF receptors do not recycle and must be continuously synthesized.