Abstract
1. The corticotectal, corticothalamic and commissural projections of areas 17 and 18 of the cat have been examined using electrical stimulation techniques. 2. In both area 17 and area 18, almost all corticotectal neurones are C cells and have binocular receptive fields. Some of these cells respond equally well to both small moving spots and elongated stimuli, while others only respond to stimuli of restricted length (cf. Palmer & Rosenquist, 1974). Both types are highly direction-selective. A third type of corticotectal C cell responds optimally to long edges or bars and shows only weak direction selectivity. Corticotectal cells generally have fast conducting axons and the majority are encountered in lamina V. About 25% of all cells recorded in lamina V can be antidromically activated from the superior colliculus. 3. Striate and parastriate cells efferent to the thalamus can have either S or C type receptive fields. Corticothalamic S cells are the most common type of efferent cell in lamina VI and have more slowly conducting axons than C cells. Efferent S cells are almost always direction-selective and about half have binocular receptive fields. 4. It is suggested that there may be at least three subgroups within the corticothalamic cells: lamina V C cells project to the pulvinare complex (the same cells may also send axons to the superior colliculus), lamina VI C cells project to the perigeniculate nucleus and lamina VI S cells provide the cortical input to neurones within the lateral geniculate nucleus. 5. In contrast to the corticotectal and corticothalamic projections, the receptive fields of cells projecting through the corpus callosum forth a heterogenous group. All major striate and parastriate receptive field classes are efferent to the contralateral cortex. Their receptive field centres are located close to the vertical mid line and most cells respond best to stimuli moving towards the ipsilateral visual hemifield. Efferent neurones are mostly encountered in lamina III, within about 1mm either side of the 17-18 border zone. 6. Cells orthodromically excited after commissural stimulation have mostly C or B type receptive fields. Unlike efferent callosal neurones, orthodromically activated cells are encountered up to 3 mm into area 18 and can have receptive fields located up to 9 degrees from the vertical mid line. 7. The results are discussed with regard to the possible functional significance of each of the corticofugal pathways.