Abstract
Mutation of the urvD gene of Escherichia coli is associated with an increased capacity for genetic recombination. The hyper-recombination effect is abolished by an additional mutation in lexA that limits synthesis of RecA protein and other gene products regulated by LexA repressor, and is not restored when increased synthesis of RecA protein is facilitated by a recAo c mutation. The viability of uvrD lexA strains is reduced and revertants selected on the basis of improved growth fall into three categories: those that are lexA +,or carry another mutation in lexA that directly suppresses the lexA defect; recA mutants that have lost the capacity for recombination altogether; and a third class which carry a mutation that is not in lexA or recA and which restores the hyper-rec phenotype but does not otherwise suppress the lexA defect. These results indicate that the hyper-recombination effect of a uvrD mutation is an induced response catalysed by RecA protein and at least one other lexA regulated activity.