Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms

Abstract
Passive-microwave satellite remote sensing can greatly enhance large-scale snow measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. This study provides preliminary results from the comparison and evaluation of several different passive-microwave algorithms. These algorithms represent examples which include both mid- and high-frequency channels, vertical and horizontal polarizations and polarization-difference approaches. In our comparisons we utilize larger, more comprehensive, validation datasets which can be expected to provide a full range of snow/climate conditions rather than limited data which may only represent a snapshot in time and space. Evaluation of snow extent derived from passive-microwave data is undertaken through comparison with the U.S. National Oceanic and Atmospheric Administration (NOAA) Northern Hemisphere snow charts which are based on visible-band satellite data. Results clearly indicate those time periods and geographic regions where the two techniques agree and where they tend to consistently disagree. Validation of snow water equivalent derived from passive-microwave data is undertaken using measurements from snow-course transects in the former Soviet Union. Preliminary results indicate a general tendency for nearly all of the algorithms to underestimate snow water equivalent.