Testing For Independence of Observations in Animal Movements

Abstract
Many analyses of animals movements assume that an animals's position at time t + 1 is independent of its position at time t, but no statistical procedure exists to test this assumption with bivariate data. Using empirically derived critical values for the ratio of mean squared distance between successive observations to mean squared distance from the center of activity, we demonstrate a bivariate test of the independence assumption first proposed by Schoener. For cases in which the null hypothesis of independence is rejected, we present a procedure for determining the time interval at which autocorrelation becomes negligible. To illustrate implementation of the test, locational data obtained from a ratio—tagged adult female cotton rat (Sigmodon hispidus) were used. The test can be used to design an efficient sampling schedule for movement studies, and it is also useful in revealing behavioral phenomena such as home range shifting and any tendency of animals to follow prescribed routes in their daily activities. Further, the test may provide a means of examining how an animal's use of space is affected by its internal clock.