Formation of Vortex Streets
- 1 January 1953
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 24 (1), 98-103
- https://doi.org/10.1063/1.1721143
Abstract
It is shown that, for vortex trails in a nonviscous fluid, the mean longitudinal spacing a and mean transverse spacing h are invariant. It follows from this and other known facts, that the periodicity of a vortex trail is unstable, not the ratio h/a. In a viscous fluid, a is invariant but h increases. This fact explains various known experimental observations. A rough explanation is given for the order of magnitude of the Strouhal number S, based on the inertia opposed by the wake to transverse oscillations. Finally, using the theory of logarithmic potential, it is shown that, even in a nonviscous fluid, the concentration of vorticity is limited to circles whose diameter is about a/4.Keywords
This publication has 15 references indexed in Scilit:
- Investigation of the Wing-Wake Frequency with Application of the Strouhal NumberJournal of the Aeronautical Sciences, 1945
- Contribution à l'étude des tourbillons alternés de Bernard-KarmanAnnales de la faculté des sciences de Toulouse Mathématiques, 1939
- Über die Stabilität der Kármánschen Wirbelstraße .ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1937
- Zur Theorie der Kármánschen WirbelstraßeArchive of Applied Mechanics, 1936
- On the action of viscosity in increasing the spacing ratio of a vortex streetProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1936
- Einfluß großer Zähigkeit bei Strömung um ZylinderForschung im Ingenieurwesen, 1936
- An experimental investigation of the flow behind circular cylinders in channels of different breadthsProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1930
- The wake in fluid flow past a solidProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1930
- Stability and the Equations of DynamicsAmerican Journal of Mathematics, 1927
- On the resistance of airProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1907