Abstract
We have characterized the changes in microtubule organization that occur through the cell division cycle of the fission yeast Schizosaccharomyces pombe by indirect immunofluorescence microscopy. During interphase, groups of cytoplasmic microtubules, independent of the spindle pole body (SPB), form an array extending between the cell tips. These microtubules are involved in positioning the nucleus at the cell equator and in the establishment of cell polarity. At mitosis, the interphase array disappears and is replaced by an intranuclear spindle extending between the now duplicated SPBs. Elongation of the spindle sees the appearance of astral microtubules emanating from the cytoplasmic face of the SPBs. These persist until the end of anaphase whereupon the spindle microtubules depolymerize and two microtubule organizing centres (MTOCs) at the cell equator re-establish the interphase array. We have used the unique properties of various cell division cycle mutants to investigate further the function of these different microtubule arrays and their temporal and positional control.