Über die Wirkung von Röntgenstrahlen auf den Zellstoffwechsel

Abstract
I. X-irradiation of isolated rat diaphragm with 10 to 200 kr produces a change in tissue metabolism which we schematize in two successive phases: 1st phase: Increase of oxygen comsumption, proportional to the dosage; an even greater increase of CO2 production; QCO2/QO2 > 1, that is, aerobic glycolysis; inhibition of anaerobic glycolysis. 2nd phase: Reduction of oxygen consumption, proportional to the dosage (over 65 kr the Qo2 decreases below the control); an even greater decrease of CO2 production: QCO2/QO2 > 1; a greater inhibition of anaerobic glycolysis. With 200 kr or more no increase of respiration appears, but instead from the beginning there is a reduction of the metabolism as described in the second phase. II. A similar effect is found in rat liver and in frog heart tissue. III. When the tissue was incubated in the homologus serum no change in the quality of the described effect was observed. Under our experimental conditions the tissue was X-irradiated within a small quantity of incubation medium and immediately afterwards placed in a fresh medium; this limits the effect of oxidative radicals (arising in the X-irradiated water) upon the tissue. IV. We set forth the experimental hypothesis that all the described changes in the metabolism of the cell after X-irradiation depend upon a primary alteration of electrolyte balance in the cell, especially of the potassium/sodium relationship. The well known decrease of glycolysis after X-irradiation is a consequence of the loss of potassium from the X-irradiated cell.