2D Ruddlesden–Popper Perovskites for Optoelectronics
Top Cited Papers
- 13 October 2017
- journal article
- review article
- Published by Wiley in Advanced Materials
- Vol. 30 (2)
- https://doi.org/10.1002/adma.201703487
Abstract
Conventional 3D organic–inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden−Popper‐type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi‐2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron–phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high‐performance electronic devices are rationalized.Keywords
Funding Information
- National Natural Science Foundation of China (17520710100)
- Vetenskapsrådet (#NPRP7-227-1-034)
- Qatar National Research Fund
This publication has 70 references indexed in Scilit:
- A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture StabilityAngewandte Chemie International Edition, 2014
- Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 2013
- Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 2012
- Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2012
- 6.5% efficient perovskite quantum-dot-sensitized solar cellNanoscale, 2011
- Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic CellsJournal of the American Chemical Society, 2009
- Optical properties of PbI-based perovskite structuresJournal of Luminescence, 1994
- Dielectric confinement effect on excitons in-based layered semiconductorsPhysical Review B, 1992
- The compound Sr3Ti2O7and its structureActa Crystallographica, 1958
- New compounds of the K2NIF4typeActa Crystallographica, 1957