Effects of Light on the Growth and Development of the Liverwort, Sphaerocarpos donnellii Aust.

Abstract
Fragments of thalli of the liverwort, Sphaerocarpos donnellii Aust., inoculated into liquid medium containing sucrose and mineral salts, attain a much greater dry weight after 9 days growth in continuous white light than in darkness. Light causes this difference by increasing the rate of growth of the plants. This growth response is mediated by the pigment systems of photosynthesis and phytochrome. An inhibitor of photosynthesis, DCMU, at concentrations which inhibit light-mediated CO2 fixation, decreases the growth rate of light-grown but not dark-grown plants. Light still slightly increases the growth rate of plants in the presence of DCMU. This latter response is mediated by phytochrome, since it can be effected by a 2-min. exposure to low intensity red light every 12 hr., and far-red light reverses the effect of red. The increased growth rate effected by red light is related to a change in the morphology of the plants. Dark-grown plants form compact balls of tissue consisting of lobes. These lobes are rounded and thick and exhibit an abnormal callus-type growth, with few well-defined meristematic regions. Plants grown in red light form fluffy balls of tissue. The lobes of these plants have a morphology more typical of Sphaerocarpos in nature. They are 2 cell layers thick, flattened, and have numerous well-defined meristematic areas. The greater number of meristems allows for the increased growth rate of the plants grown in red light.