THE FINE STRUCTURE OF ASTROCYTES IN THE CEREBRAL CORTEX AND THEIR RESPONSE TO FOCAL INJURY PRODUCED BY HEAVY IONIZING PARTICLES

Abstract
Normal and reactive astrocytes in the cerebral cortex of the rat have been studied with the electron microscope following focal alpha particle irradiation. The presence of glycogen and approximately 60-A fibrils identify astrocyte cytoplasm in formalin-perfused tissue. The glycogen particles facilitate the identification of small processes and subpial and perivascular end-feet. Both protoplasmic and fibrous astrocytes contain cytoplasmic fibrils and should be distinguished on the basis of the configuration of their processes and their distribution. Acutely reactive astrocytes are characterized by a marked increase in the number of glycogen granules and mitochondria from the first day after irradiation. These cells later hypertrophy and accumulate lipid bodies and increased numbers of cytoplasmic fibrils. The glial "scar" consists of a greatly expanded volume of astrocyte cytoplasm filled with fibrils and displays no signs of astrocyte death, reversion to primitive forms, or extensive multiplication.