Real-Time Cavity QED with Single Atoms

Abstract
The combination of cold atoms and large coherent coupling enables investigations in a new regime in cavity QED with single-atom trajectories monitored in real time with high signal-to-noise ratio. The underlying “vacuum-Rabi” splitting is clearly reflected in the frequency dependence of atomic transit signals recorded atom by atom, with evidence for mechanical light forces for intracavity photon number <1. The nonlinear optical response of one atom in a cavity is observed to be in accord with the one-atom quantum theory but at variance with semiclassical predictions.