Molecular imaging using hyperpolarized 13C

Abstract
MRI provides unsurpassed soft tissue contrast, but the inherent low sensitivity of this modality has limited the clinical use to imaging of water protons. With hyperpolarization techniques, the signal from a given number of nuclear spins can be raised more than 100 000 times. The strong signal enhancement enables imaging of nuclei other than protons, e.g. (13)C and (15)N, and their molecular distribution in vivo can be visualized in a clinically relevant time window. This article reviews different hyperpolarization techniques and some of the many application areas. As an example, experiments are presented where hyperpolarized (13)C nuclei have been injected into rabbits, followed by rapid (13)C MRI with high spatial resolution (scan time <1 s and 1.0 mm in-plane resolution). The high degree of polarization thus enabled mapping of the molecular distribution within various organs, a few seconds after injection. The hyperpolarized (13)C MRI technique allows a selective identification of the molecules that give rise to the MR signal, offering direct molecular imaging.